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The problem of a guaranteed estimate [l, 21 of an unknown finite-dimensional vector is considered. A 
method of formalizing the problem by the observation in Hilbert space is proposed. Using this 

formulation, it is shown that the solutions of the problems of programmed and adaptive control by the 

process of observation are identical. The paper touches on the investigations described in [3-6]. 

1. FORMULATION OF THE PROBLEM 

WE WILL formulate [4] the problem of control by an observation process in Hilbert space. Suppose an 
unknown vector x E R” is measured in accordance with the model 

y=Ax+[ (1.1) 

where the measured signal y and the unknown perturbation 5 are elements of a Hilbert space H with a 
scalar derivative (., .) and A EL(R”, H) is a given linear continuous operator, which will henceforth be 
called the measuring instrument. 

The information on the perturbations 5 is completed by the inclusion 

EE$=E(dz, O), a>0 (1.2) 
E(P,U,)=~U:((U-uo), P(WllO~l] 

Here E(P, u,,) is an ellipsoid in Hilbert (finite-dimensional) space with centre u0 and self-conjugate 
non-negative operator (matrix) P, and Z is the identity operator. 

The minimax of guaranteed approach to the estimate of the vector x is based on a determination of the 
information set X(y) of the parameters, combined with the measurement of y . In the case considered X(y) 
is an ellipsoid in R, [2,7,8] 

xw=E(PCv),x,), PW=(a’4’6w’P (I-3) 
P=A*A. fi, =A*y, ~‘0)=(y,y)-(~~,A*y)=(y,y)-(A~~,y) 

Here (., .) is the scalar product in R” while A * is the conjugate operator, so that (y, Ax) = (A *y, x) 
forany YEH, XER”. 

The quantity h(y) is identical with the norm of the projection of the element y (or, which is equivalent, 

5) onto the subspace kerA* = {Zr E H : A *h = 0). It is obvious that 0 <h(y) d a, and when h(y) = a the 
information set X(y) degenerates to a point. 

Assuming that we choose the centre of the ellipsoid (1.3) as the estimate of the vector x, the accuracy of 

the estimation is naturally characterized by a function of P(y). Suppose a(.) is a specified function of the 

matrix argument and F(A, y) = @((P(y)). W e will assume, in addition, that the set Z c YR”, H) of pos- 
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sible measuring instruments is defined, and it is necessary to determine the element 4 E X, which 
optimizes the accuracy of the estimation. To formaliie this problem it is necessary, however, to set up a 
criterion which is independent of the measurement of y, which cannot be known before choosing A,,. By 
the logic of the guaranteed approach, the required involution can be obtained by maximiiing qA, y) 
with respect to y in the set of possible outcomes (1.1) and (1.2). Hence, we obtain the following problem 
of choosing the optimum programmed measuring instrument 

~x~(A,y)=~x~(~~)) ‘4min, AEI: (1.4) 
Y Y 

In (1.4) we have opt~ed the accuracy of the est~ation in calculating the worst rea~~ation of the 
perturbations, which, in practice, is equivalent to an a priori approach to the estimation [l, 21 and justifies 

the use of the term “programmed”. 

We will now assume that the measurement of (1.1) and the choice of A, can be represented in the form 
of processes which have a certain duration. It then makes sense to speak of the problem of adaptive 
optimization of measurements depending on the incoming information. 

Before we formulate the problem in an arbitrary Hilbert space, we will illustrate it using the example of 
the space H = &, [0, 11. 

Suppose 

Here 

If we know that in the interval [O, 2], 0 Q z s 1 

we can say that we have chosen the permissible measuring instrument which minimizes the function 

where the minimum and maximum are calculated for condition (1.5). Solving this problem for each z we 
can set up adaptive control of the measurements. 

Before considering an arbitrary Hilbert space we note that relations (1.5) can be regarded as a speci- 
fication of the projections of the elements a(.) and y (.) on a certain subspace. 

Suppose we have determined the expansion of unity 19, p. 3S2) into W, i.e. the family of projectors IT,, 

ro[O, l]]cL@Z,H), Z’,,=O, T,=I, T,sT,, z C 19. The parameter r E [0, l] will be identified with time 

and we will assume that up to the instant z the signal y, - - T*y corresponding to the chosen measuring 

i~~~ent A, = T,A has been realized. We will also assume that no other information arrives regarding 
the perturbations. Then the family of problems of adaptive control of measurements can be written as 

follows: 

maxlF(A,y):T,y=y,ld min; AEC, Tr.4=.4G (1.6) 
Y 

It is obvious that problems (1.4) and (1 A) are identical when r = 0. 
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Proceeding in the same way as in the theory of the planning of an experiment, problem (1.6) can be 

regarded as a realization of the idea of successive planning [lo]. It is precisely this idea which was put 

forward, for example, in [.5], as the basis for taking into account a posreriori information. In this con- 

nection, it is quite unexpected that in the case considered the solution of problem (1.6) contains no new 
info~ation on the opts measuring i~tmrnen~. 

2. THE MAIN RESULT 

We will assume that the function @(*f. representing the error of the estimation, satisfies the following 

condition 

for any d > 0 and a certain monotoni~~y non-decreasing function I(.). All the generally accepted criteria 

of the accuracy of estimation satisfy this condition. For example, for (p(P) = det(P”), representing the 
volume of the ellipsoid E(P, 0), r(n)= il-“. 

Theorem. Suppose condition (2.1) holds, 4 is a solution of problem (1.4), and in (1.6) Ai = TA. 

Then the solutions of problems (1.4) and (1.6) of programmed and adaptive control of the process of 
observation are identical. 

Proof. We will first describe the general scheme of the proof. In the space Sz = R” x H of parameters 

w = (x, 5) reIations (1.1) and (1.2) can be written in the form 

y=Dw, WE yl/o, (2.2) 

DEL cn,H), Dw=Ax+& W, =R”x Z”E@, 0) 

Suppose W, = {r~ E IV, : yi = T,Zhv) is the information set of parameters w E f2, compatible with the known 

signal y,. 
Basing ourselves on the fact that no additional information on the perturbations arrives, we can assume 

that TJ E E. 

Suppose 1;y,(y) is the information set in (2.2) when W, is replaced by W,, while X,(y) is the projection 
of W,(y) onto R”. It is obvious that in the case considered WC, W,(y) and X,(y) are ellipsoids. If 
X,(y)= E(P,(y), cc,“), problem (1.6) can be represented in the form 

(2.3) 

It turns out that 

where p( .) is a certain scalar function. 
Hence, the functionals in (2.3) and (1.4) differ solely in a scalar factor which depends on the prehiitory 

(of the signal up to the instant r). This fact also establishes the correctness of the theorem. 
We will now justify (2.4). W, is the intersection of the ellipsoid W, with the affine plane of the solutions 

of the equation 

T,Dw = D,w = yr 

We will put 

L,=kerD,= {w~f~:D,w=Ol 
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Lemma. In (x, 5) coordinates, the form of the operator I, of the orthogonal projection onto the sub- 
space L, is given by the expression 

4 
r7 = II 

-h&A: 

-&A,+ ArMTAr* + (I-T,) “) M, = (I+ A,*A,)-’ 

Proof. By the definition of the operator of orthogonal projection for w = (x, 5) E R 

c w-rrw, w-r, w) = min t w-u, w-4 ) 
UEL, 

If u=(q, c)eG, UE L,, thenA,q+T,c=O. 

For fiied q, the general solution for 6 of this equation can be represented in the form 

fT = -.4,q + (C-T,) 17, ocfz 

Consequently, finding I?, is equivalent to minimizing the quadratic form 

B (4, 0) = (x-q, x-q) + ( t--+, E--E7 ) = (x,x) + ( 5, # ) + 

+(q,(f+A~A~)q)+(o,(l-T,)o)-Z(q,x-A~5)-2~C;, fl-T,)o) 

Writing the necessary conditions for a minimum of B (q, o) with respect to q and o, we obtain 

(z+A;A,lq-(x-Aft)=& (Z-T,) cl-(Z-T,) 8 = 0 

Hence it follows that a minimum of B(., ,) is reached at the point 

From (2.7) and (2.8) we obtain 

(2.6) 

(2.7) 

w-9 

(2.9) 

(2.10) 

Relations (2.9) and (2.10) are equivalent to (2.6). This proves the lemma. 
Suppose now that X, is an arbitrary solution of the system of equations 

A;A,x,=A;y, 

(If A,* A, is a non-degenerate matrix, then x, =(A, * A,)-‘A, * y,.) Then w, = (x,, yI - A,x,) E R is a 
solution of Eq. (2.5) and ItQwt = 0. 

In fact, using the coordinate representations of the operators Q (see (1.2) and (2.2)) and I, (see (2.6)), 

we obtain 

r7Pw7=tMT(A7*A7x7-A:*y7), A,M7(A;A,x,-A;y,)>=0 

Representing the general solution of Eq. (2.5) in the form w = wI + V, u o L,, we obtain 

Iv,=! w=w7+u, UEL,, IJEVri 

v,=E(8-2fy7)e,o)=PfY,)W, 

pzCy7)= (1-(w7, QwT))= (1-t y7-AT+ Y,-A,+)) 

We will introduce the variables 

(2.11) 

f z ,zmyT + {&-T,, Ax, z = x-q, rl = E-Yr + AT XT 
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For u = (z, 17) E a we have 

T, DV = A, (x-x7) + T7 #-y7 + A, X7 = A+ + T&-y, = o 

Consequently, u=(z, ~I)E L,, and by virtue of (2.2), (2.6) and (2.11), X,(y) is identical with the 
information set Z U, for the system 

Relation (2.4) hence follows from (1.3) and (2.1). This proves the theorem. 
The content of the theorem can be illustrated using the following very simple example. Suppose two 

measurements were made of an unknown number x 

Y=OJ,,,‘,)ER’, _Yi=UiX+[i, i=1,2, t: +‘[i <l 

It is clear that the length of the section X(y) depends very much on the values of y, and y, obtained. 

However, the dimensions of the ellipsoid obtained by the section of the cylinder 

with the plane 

is obviously independent of y,. 
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